Prediction of thermodynamic properties of polymeric liquids using a new equation of state

Ali R. Berenji, Elaheh K. Goharshadi *
Deptartment of Chemistry, Ferdowsi University, Mashhad 91779, Iran

Received 17 February 2006; accepted 8 April 2006

Abstract

In this paper, we have used a simple equation of state (EoS) to predict the density for polymeric liquid mixtures at different temperatures, pressures, and compositions. The excess molar volumes of these mixtures have been also calculated using this equation of state. Also, we have computed isothermal compressibility. A wide comparison with experimental data has been made for each thermodynamic property. The values of statistical parameters between experimental and calculated properties show the ability of this equation of state in reproducing and predicting different thermodynamic properties for studied polymeric mixtures.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Equation of state; Polymeric liquids; Specific volume

1. Introduction

Polymeric liquids are widely used for industrial and academic purposes. Poly(ethylene glycol)s (PEGs), are frequently used in the pharmaceutical and cosmetic fields as solvents, carriers, humectants, lubricants, binders, bases, and coupling agents and also for extraction, separation, and purification of biological materials [1].

During the last decade, aqueous solutions of PEGs have received considerable attention both experimentally [2-6] and theoretically [7-10]. Aqueous solutions of a closely related polymer, poly(propylene glycol) (PPG) have also been studied. The higher hydrophobicity of PPG makes it soluble in a broad range of solvents, ranging from n-hexane (where it shows an upper consolute temperature) to water (where it shows a lower consolute temperature) [11].

Predicting the thermodynamic properties of hydrogenbonded systems (such as PEG systems) is a challenging problem that has received considerable attention. Both activity coefficient models and equations of state (EoSs) have been developed for hydrogen-bonded fluids [12]. Different

[^0]0032-3861/\$ - see front matter © 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.polymer.2006.04.030
theoretical EoSs have been tested against extensive pressure-volume-temperature (PVT) data of pure polymers [13,14], polymer-solvent, and blend systems [15-17].

The purpose of this study is to report the results of simultaneous calculations of volumetric and thermodynamic properties such as molar density, ρ_{m}, specific volume, V, excess volume, V^{E}, and isothermal compressibility, κ_{T}, for polymer melts, solutions, and blends using a new EoS derived by Goharshadi, Morsali, and Abbaspour 'the GMA EoS' [18]. A wide comparison with experimental data was made. The accuracy of the equation of state in prediction of thermodynamic properties of polymer melts and mixtures has been determined by the statistical parameters and compared with other ones calculated by the the Flory-Orwoll-Vrij (FOV), the Schotte, and the Ihm-Song-Mason (ISM) equations of state.

1.1. Theoretical basis

A general EoS for liquids has been recently derived by Goharshadi et al. (the GMA EoS) [18], which has been found to be valid for polar, nonpolar, and hydrogen-bonded pure fluids and non-polymeric liquid mixtures [18-21]. The equation of state is based on the average potential energy and that is
$(2 Z-1) V_{\mathrm{m}}^{3}=A(T)+B(T) \rho_{\mathrm{m}}$
where Z, V_{m}, and ρ_{m} are compressibility factor, molar volume, and molar density, respectively. The intercept and the slope of this equation both depend on temperature via the equations
$A(T)=A_{0}-\frac{2 A_{1}}{R T}+\frac{2 A_{2} \ln T}{R}$
$B(T)=B_{0}-\frac{2 B_{1}}{R T}+\frac{2 B_{2} \ln T}{R}$
where $A_{0}-A_{2}$ and $B_{0}-B_{2}$ are constants. To use the GMA EoS for a liquid, the A and B parameters must be known. To find these parameters, one may plot $(2 Z-1) V_{\mathrm{m}}^{3}$ against ρ_{m} for different isotherms. The slope and intercept of the straight lines can be fitted to Eqs. (2) and (3) and from which A_{0} to A_{2} and B_{0} to B_{2} can be found, respectively.

The functions used for calculating density and isothermal compressibility using Eq. (1) are given as Eqs. (4) and (5), respectively. The constants $A_{0}-A_{2}$ and $B_{0}-B_{2}$ can be used to calculate these properties of liquid polymer systems at any temperature and pressure.

$$
\begin{align*}
& \left(\frac{B_{0} R T}{2}-B_{1}+T B_{2} \ln T\right) \rho_{\mathrm{m}}^{5}+\left(\frac{A_{0} R T}{2}-A_{1}+A_{2} T \ln T\right) \rho_{\mathrm{m}}^{4} \\
& \quad+\frac{\rho_{\mathrm{m}} R T}{2}-P=0 \tag{4}
\end{align*}
$$

$\kappa_{T}=\frac{2}{\rho_{\mathrm{m}} R T+4 \rho_{\mathrm{m}}^{4}\left(R T A_{0}-2 A_{1}+2 T A_{2} \ln T\right)+5 \rho_{m}^{5}\left(B_{0} R T-2 B_{1}+2 B_{2} T \ln T\right)}$
values of the constants of Eqs. (2) and (3). The ranges of pressure and temperature of these tables are the same as Tables 1 and 2.

A more sensitive test for the EoS is to calculate density at different temperatures, pressures, and compositions and compare with the corresponding experimental data. Hence, the density of the binary and ternary polymer mixtures and their pure components in the wide ranges of temperature, pressure, and composition has been calculated using Eq. (4) and the results have been changed to specific volumes (in $\mathrm{cm}^{3} \mathrm{~g}^{-1}$) via this equation
$V=\frac{1000}{\rho_{\mathrm{m}} M_{\mathrm{w}}}$
which M_{w} is the molecular weight of the compound.
The accuracy in prediction of specific volume can be described by the average absolute deviation, AAD. The AAD characterizes that the experimental points are more or less close to calculated values. Tables 5-7 show the values of AAD of calculated specific volumes for the pure polymer melts and solvents, the binary solutions and blends, and the ternary mixtures, respectively. The ranges of pressure and temperature of these tables are the same as Tables 1 and 2.

To assess and compare the performance of the GMA EoS in prediction of specific volume of these polymeric mixtures and their pure components, the corresponding values of AAD obtained by the Flory-Orwoll-Vrij (FOV) [29], the Schotte [30], and the Ihm-Song-Mason (ISM) [31,32] EoSs have been calculated. The lower values of AAD obtained by the GMA EoS for binary and ternary mixtures support the ability of this EoS in prediction of specific volume of these liquid systems.

Table 1
The intercept (A), slope (B), the square of correlation coefficient (R2) of Eq. (1), and pressure range of the data for binary polymeric mixtures

Table 1 (continued)

X_{1}	T (K)	$\begin{aligned} & \mathrm{B} \\ & \left(\mathrm{~L}^{4} \mathrm{~mol}^{-4}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \left(\mathrm{~L}^{3} \mathrm{~mol}^{-3}\right) \end{aligned}$	R^{2}	$\Delta \mathrm{P}$ (MPa)	X_{1}	T (K)	$\begin{aligned} & \mathrm{B} \\ & \left(\mathrm{~L}^{4} \mathrm{~mol}^{-4}\right) \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \left(\mathrm{~L}^{3} \mathrm{~mol}^{-3}\right) \end{aligned}$	R^{2}	$\Delta \mathrm{P}$ (MPa)
0.13477	298.15	9.45101	-25.6901	0.999753	0.1-40	0.37701	298.15	1.48624	-5.88177	0.999986	0.1-40
	308.15	9.04112	-24.3849	0.999747			308.15	1.41916	-5.57178	0.999922	
	318.15	8.72766	-23.3555	0.999902			318.15	1.36649	-5.32217	0.999945	
	328.15	8.3913	-22.2781	0.999889			328.15	1.31313	-5.0727	0.999961	
0.61406	298.15	0.169398	-1.04511	0.999839	$0.1-40$	0.8	298.15	26.4777	-58.4786	0.999937	0.1-50
	308.15	0.16327	-0.99948	0.999923			318.15	24.0713	-52.3174	0.999868	
	318.15	0.156333	-0.94948	0.999712			348.15	21.1901	-44.9325	0.999867	
	328.15	0.152016	-0.91583	0.999847		0.9	298.15	30.3208	-64.765	0.999909	0.1-50
0.85537	298.15	0.0032	-0.04515	0.999882	0.1-40		318.15	27.6989	-58.2317	0.99987	
	308.15	0.003062	-0.04288	0.999923			348.15	24.4466	-50.1466	0.999853	
	318.15	0.002955	-0.04105	0.99983		1.0	298.15	35.2304	-72.8249	0.99995	0.1-50
	328.15	0.002848	-0.03925	0.999897			318.15	32.051	-65.22	0.999888	
1.00000	298.15	$3.76 \mathrm{E} \times 06$	-0.00021	0.999976	0.1-40		348.15	27.9872	-55.5816	0.999758	
	308.15	$3.67 \mathrm{E} \times 06$	-0.00021	0.999973			PEG-200(1) + Anisole(2) ${ }^{\text {f }}$				
	318.15	$3.61 \mathrm{E} \times-06$	-0.00021	0.999977		0.0	298.15	0.01845	-0.18315	0.999083	10-50
	328.15	$3.61 \mathrm{E} \times 06$	-0.00021	0.999966			318.15	0.017047	-0.16661	0.999835	
	PPG-42	+ PEGME-3	0(2) ${ }^{\text {e }}$				338.15	0.016734	-0.16099	0.996337	
0.0	298.15	7.55512	-22.4199	0.999915	0.1-50	0.1	298.15	0.030315	-0.25941	0.999543	10-50
	318.15	6.75406	-19.7321	0.999604			318.15	0.027846	-0.23416	0.99998	
	348.15	6.07456	-17.338	0.99993			338.15	0.028307	-0.23406	0.996089	
0.1	298.15	9.12054	-25.8483	0.999983	0.1-50	0.2	298.15	0.045188	-0.36209	0.997819	10-50
	318.15	8.14531	-22.7194	0.999516			318.15	0.040631	-0.32013	0.999565	
	348.15	7.32677	-19.9571	0.99994			338.15	0.039145	-0.3031	0.998856	
0.2	298.15	10.7522	-29.1742	0.999838	0.1-50	0.3	298.15	0.066144	-0.49876	0.999787	10-50
	318.15	9.89436	-26.4219	0.999702			318.15	0.0649	-0.4822	0.983357	
	348.15	8.73062	-22.7642	0.999963			338.15	0.05764	-0.42084	0.981155	
0.3	298.15	12.6341	-32.9944	0.999986	0.1-50	0.4	298.15	0.089754	-0.6384	0.999089	10-50
	318.15	11.571	-29.7344	0.999602			318.15	0.084954	-0.59497	0.999975	
	348.15	10.1847	-25.547	0.999917			338.15	0.075884	-0.52273	0.994366	
0.4	298.15	15.1447	-38.142	0.999905	0.1-50	0.5	298.15	0.125815	-0.84756	0.999294	10-50
	318.15	13.7397	-34.0494	0.999588			318.15	0.116348	-0.77147	0.999878	
	348.15	12.1088	-29.2973	0.999909			338.15	0.113517	-0.74078	0.997355	
0.5	298.15	17.5053	-42.5982	0.999927	0.1-50	0.6	298.15	0.165757	-1.05981	0.999869	10-50
	318.15	15.7558	-37.7339	0.999798			318.15	0.158156	-0.99557	0.999512	
	348.15	13.9563	-32.6288	0.999844			338.15	0.161343	-1.00048	0.989908	
0.6	298.15	20.0266	-47.1506	0.999962	0.1-50	0.7	298.15	0.205946	-1.25336	0.998873	10-50
	318.15	18.0463	-41.8202	0.999807			318.15	0.207387	-1.24504	0.997922	
	348.15	15.9658	-36.1176	0.999883			338.15	0.200503	-1.18556	0.99929	
0.7	298.15	23.0188	-52.4982	0.999937	0.1-50	0.8	298.15	0.283548	-1.65096	0.999752	10-50
	318.15	20.8061	-46.7016	0.999801			318.15	0.270585	-1.55283	0.999956	
	348.15	18.4907	-40.49	0.999819			338.15	0.259627	-1.46861	0.994008	
0.9	298.15	0.382159	-2.12184	0.9993	10-50	1.0	298.15	0.473244	-2.52853	0.999465	10-50
	318.15	0.337079	-1.84371	0.998882			318.15	0.454459	-2.3966	0.999808	
	338.15	0.405408	-2.19616	0.99675			338.15	0.421821	-2.19282	0.993999	

${ }^{\text {a }}$ Data sources: Lee et al. [22,23].
${ }^{\mathrm{b}}$ Data source: Lee et al. [22].
${ }^{\text {c }}$ Data source: Colin et al. [25].
${ }^{\mathrm{d}}$ Data source: Colin et al. [24].
${ }^{\mathrm{e}}$ Data source: Lee et al. [27].
${ }^{f}$ Data source: Lee et al. [26].

Isothermal compressibility, κ_{T}, and excess volume, V^{E}, are other thermodynamic properties investigated in this study. The values of κ_{T} have been calculated using Eq. (5) and compared with the corresponding pseudo-experimental values calculated based on the Tait equation. The results are tabulated in Table 8. The constants of the Tait equation for each mixture have been gathered from the references of Table 1.

The excess volume is related to the molecular interactions in a mixture. By definition, the excess volume of a binary system is calculated via the following equation
$V^{\mathrm{E}}=V_{\mathrm{m}}-x_{1} V_{1}^{\circ}-x_{2} V_{2}^{\circ}$
with
$V_{\mathrm{m}}=\frac{x_{1} M_{1}+x_{2} M_{2}}{\rho_{\mathrm{m}}}$

Table 2
The intercept (A), slope (B), the square of correlation coefficient $\left(R^{2}\right)$ of Eq. (1), and pressure range of the data for ternary polymeric mixtures of PEG-200(1)+ PEGME-350(2) + anisole (3)

x_{1}, x_{2}	$T(\mathrm{~K})$	$B\left(\mathrm{~L}^{4} \mathrm{~mol}^{-4}\right)$	$A\left(\mathrm{~L}^{3} \mathrm{~mol}^{-3}\right)$	R^{2}	
$0.2,0.2$	298.15	0.286915	-1.61872	0.99993	
	318.15	0.261502	-1.45199	0.999488	
$0.2,0.6$	348.15	0.229972	-1.246	0.999863	
	298.15	2.68966	-9.98782	0.999899	
$0.6,0.2$	318.15	2.41041	-8.81632	0.999686	
	348.15	1.16045	-7.45948	0.999659	
	298.15	1.02757	-5.09561	0.99997	
$0.35,0.325$	318.15	0.927176	-4.44534	0.999519	0.999859
	348.15	1.06229	-3.9213	0.999931	
	298.15	0.952868	-4.68953	0.999486	
	318.15	0.85163	-4.14207	0.999886	

Data source: Lee et al. [28].
Table 3
The values of constants and the square of the correlation coefficients of Eqs. (2) and (3) for binary mixtures

x_{1}	$A_{0}\left(\mathrm{~L}^{3} \mathrm{~mol}^{-3}\right)$	$A_{1}\left(\mathrm{~L}^{4} \mathrm{~atm} \mathrm{~mol}^{-4}\right)$	$A_{2}\left(\mathrm{~L}^{4} \mathrm{~atm} \mathrm{~mol}^{-4} \mathrm{~K}^{-1}\right)$	$B_{0}\left(\mathrm{~L}^{4} \mathrm{~mol}^{-4}\right)$	$B_{1}\left(\mathrm{~L}^{5} \mathrm{~atm} \mathrm{~mol}{ }^{-5}\right)$	$B_{2}\left(\mathrm{~L}^{5} \mathrm{~atm} \mathrm{~mol}{ }^{-5} \mathrm{~K}^{-1}\right)$
PEG-200(1) + 1-octanol(2)						
0.0	40.0619	89.2086	-0.240693	-6.35321	-13.8946	0.0383143
0.1	16.6121	44.8683	-0.0984721	-2.6309	-6.85289	0.015752
0.2	8.88077	31.5992	-0.0512691	-1.33471	-4.61501	0.00785402
0.3	2.89271	22.3938	-0.0143622	-0.350488	-3.09326	0.00180569
0.4	-5.30418	8.0251	0.0354343	1.40596	0.0572098	-0.00884611
0.5	-28.4905	-34.7568	0.17635	4.96699	6.60907	-0.0304709
0.6	416.949	822.687	-2.52767	-71.6557	-140.863	0.434692
0.7	-38.8611	-50.1707	0.239766	6.98494	9.73894	-0.0427487
0.8	21.965	70.2016	-0.128809	-3.69248	-11.3629	0.021987
0.9	-8.7116	12.8522	0.0569343	1.35577	-1.92553	-0.00854016
1.0	66.6365	163.685	-0.398494	-11.655	-27.9819	0.0701268
PEGME-350(1) + PEG-200(2)						
0.1	142.632	320.913	-0.858089	-27.6172	-60.9758	0.166809
0.2	187.007	416.714	-1.1271	-38.6384	-84.5283	0.233806
0.3	234.053	534.219	-1.40462	-51.0183	-114.539	0.30741
0.4	-31.8625	48.877	0.215775	6.73468	-10.0457	-0.044406
0.5	338.045	782.783	-2.02657	-82.5888	-187.998	0.497334
0.6	228.362	591.294	-1.35887	-57.9662	-146.289	0.347656
0.7	406.098	975.055	-2.42969	-111.009	-260.776	0.668003
0.8	289.673	770.708	-1.72646	-82.3444	-212.274	0.495646
0.9	620.907	1465	-3.72217	-189.289	-436.466	1.14106
1.0	1432.69	3120.81	-8.61728	-456.601	-982.281	2.7541
PEG-200(1) + PPG-400(2)						
0.00000	-8.33334	11.611	0.0521067	1.27202	-1.67643	-0.00752609
0.13477	301.45	1004.11	-1.76457	- 102.364	-331.065	0.610266
0.2839	266.878	868.003	-1.5445	-78.9297	-256.737	0.462021
0.39598	176.611	549.581	-1.04799	-54.6745	-160.321	0.33026
0.60723	-111.344	-92.8975	0.690524	29.7627	29.961	-0.181771
0.80381	127.23	305.249	-0.766817	-28.339	-65.8464	0.171999
0.88454	-20.8185	8.7586	0.131931	4.56506	0.26472	-0.0280201
1.00000	600.674	1706.55	-3.55852	-226.239	-623.38	1.35667
Water(1)+PPG(2)						
0.20105	1203.95	2435.72	-7.38051	-452.444	-905.755	2.77156
0.37701	92.2481	277.382	-0.543336	-22.1775	-64.3974	0.132491
0.61406	-4.99771	7.34401	0.0327926	0.702584	-0.991677	-0.00442427
0.85537	0.749271	2.17316	-0.00444128	-0.0512678	-0.142999	0.000308035
1.00000	0.0124196	0.0250714	-0.000762238	-0.00025755	-0.000514735	0.00000157874
PPG-425(1) + PEGME-350(2)						
0.0	1082.49	2516.88	-6.47495	-355.89	-814.21	2.1379
0.1	1285.18	2976.45	-7.68865	-442.075	-1007.63	2.65594
0.2	-107.967	305.483	0.747222	59.0943	-50.5666	-0.377883
0.3	19.1816	634.968	-0.00193592	16.4603	-167.944	-0.126416

Table 3 (continued)

x_{1}	$A_{0}\left(\mathrm{~L}^{3} \mathrm{~mol}^{-3}\right)$	$A_{1}\left(\mathrm{~L}^{4} \mathrm{~atm} \mathrm{~mol}^{-4}\right)$	$A_{2}\left(\mathrm{~L}^{4} \mathrm{~atm} \mathrm{~mol}{ }^{-4} \mathrm{~K}^{-1}\right)$	$B_{0}\left(\mathrm{~L}^{4} \mathrm{~mol}^{-4}\right)$	$B_{1}\left(\mathrm{~L}^{5} \mathrm{~atm} \mathrm{~mol}{ }^{-5}\right)$	$B_{2}\left(\mathrm{~L}^{5} \mathrm{~atm} \mathrm{~mol}{ }^{-5} \mathrm{~K}^{-1}\right)$
0.4	533.82	1747.86	-3.08984	-181.721	-601	1.06386
0.5	1182.1	3100.28	-6.99412	-459.702	-1184	2.73942
0.6	1186.21	3193.32	-7.00171	-476.384	-1258.07	2.83411
0.7	1278.45	3453.31	-7.55141	-540.939	- 1423.15	3.22334
0.8	570.946	2196.49	-3.23953	-222.514	-863.811	1.28451
0.9	347.619	1850.36	-1.88036	-127.507	-728.18	0.70787
1.0	179.26	1725.98	-0.799254	-35.7944	-657.074	0.124655
PEG-200(1) + anisole(2)						
0.0	16.2773	33.6234	-0.0987401	-1.67553	-3.41094	0.0101905
0.1	40.2539	80.2112	-0.244522	-4.78131	-9.43902	0.0290925
0.2	36.4138	75.947	-0.220119	-4.60887	-9.4873	0.0279293
0.3	-84.8153	-155.549	0.515604	11.1956	20.6871	-0.0679665
0.4	-61.3373	-106.788	0.374235	8.76445	15.4932	-0.0533468
0.5	66.2191	138.431	-0.401462	-10.0034	-20.5739	0.0608303
0.6	111.3	221.502	-0.678724	-17.844	-35.0597	0.109051
0.7	-95.4494	- 175.452	0.57503	14.9804	27.9716	-0.0899258
0.8	4.07458	26.913	-0.0253872	-0.775777	-4.12396	0.00520064
0.9	1083.5	2083.72	-6.59103	-195.844	-375.778	1.19183
1.0	-158.637	-271.311	0.964439	29.2541	50.9323	-0.177271

Table 4
The values of constants and the square of the correlation coefficients of Eqs. (2) and (3) for ternary mixtures of PEG-200(1) + PEGME-350(2) + anisole(3)

| $x_{1,} x_{2}$ | $A_{0}\left(\mathrm{~L}^{3} \mathrm{~mol}^{-3}\right)$ | $A_{1}\left(\mathrm{~L}^{4} \mathrm{~atm} \mathrm{~mol}^{-4}\right)$ | $A_{2}\left(\mathrm{~L}^{4} \mathrm{~atm} \mathrm{~mol}\right.$
 $\left.4 \mathrm{~K}^{-1}\right)$ | $B_{0}\left(\mathrm{~L}^{4} \mathrm{~mol}^{-4}\right)$ | $B_{1}\left(\mathrm{~L}^{5} \mathrm{~atm} \mathrm{~mol}^{-5}\right)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | | $B_{2}\left(\mathrm{~L}^{5} \mathrm{~atm} \mathrm{~mol}^{-}\right.$ |
| :--- |
| $0.2,0.2$ |

where V_{m} is the molar volume of mixture. x_{i}, V_{i}°, and M_{i} stand for the mole fraction, molar volume, and molecular weight, respectively, for component i. A comparison between experimental and calculated values of excess molar volumes
has been shown in Table 8. As an example, Fig. 2 shows the variation of excess molar volume with composition for PPG-425 (1) + PEGME-350 (2) at 0.1 MPa at different temperatures.

Table 5
Results of specific volume correlation with the equations of state for 'pure' compounds

Compound	$\mathrm{AAD}^{\mathrm{a}}\left(\mathrm{cm}^{3} \mathrm{~g}^{-1}\right)$			ISM EoS
	GMA EoS	FOV EoS	Schotte EoS	
PEG-200	0.00012^{b}	0.00021^{b}	0.00007^{b}	
	0.00020^{c}	0.00017^{c}	0.00012^{c}	
PPG-400	0.00006^{d}			
PPG-425	0.00004		0.01006^{d}	
PEGME-350	0.00014	0.00025^{e}	0.00750^{d}	
	0.00007^{b}	0.00017^{b}	0.00025^{e}	
Anisole	0.00010^{e}	0.00021^{e}	0.00010^{b}	
1-Octanol	0.00053	0.00029^{e}	0.00032^{c}	

[^1]Table 6
Results of specific volume correlation with the equations of state for polymer solutions and blends

Mixture (1)+(2)	AAD $^{\mathrm{a}}$			
	GMA	FOV	Schotte	ISM
	EoS	EoS	EoS	EoS
PEG-200+1-octanol	0.019	0.040^{b}	0.040^{b}	0.421^{c}
PEG-200+PPG-400	0.006	0.146^{d}	0.115^{d}	1.169^{c}
PPG-425+PEGME-350	0.014	0.264^{d}	0.255^{d}	
PEG-200+anisole	0.042	0.150^{e}	0.140^{e}	
PEGME-350+PEG-200	0.012	0.020^{b}	0.010^{b}	
Water+PPG-400	0.011			

${ }^{\mathrm{a}} \mathrm{AAD}=(100 / n) \sum_{i=1}^{n}\left|V_{i, \text { calc }}-V_{i, \text { exp }}\right| / V_{i, \text { exp }}$.
${ }^{\mathrm{b}}$ Data source: Lee et al. [22].
${ }^{\text {c }}$ Data source: Sabzi and Boushehri [34].
${ }^{\mathrm{d}}$ Data source: Lee et al. [27].
${ }^{\mathrm{e}}$ Data source: Lee et al. [26].

Table 7
Results of specific volume correlation with the equations of state for the ternary polymer solution, PEG-200(1) + PEGME-350(2) + anisole(3)

x_{1}, x_{2}	AAD $^{\mathrm{a}}$		
	GMA EoS	FOV EoS $^{\mathrm{b}}$	Schotte EoS
$0.2,0.6$	0.01	0.12	0.10
$0.2,0.2$	0.01	0.13	0.12
$0.6,0.2$	0.02	0.12	0.11
$0.35,0.325$	0.02	0.12	0.13

${ }^{\mathrm{a}}$ AAD $=(100 / n) \sum_{i=1}^{n}\left|V_{i, \text { calc }}-V_{i, \exp }\right| / V_{i, \text { exp }}$.
${ }^{\mathrm{b}}$ Data Source: Lee et al. [28].

3. Conclusion

The excellent mutual agreement between calculated and experimental properties such as specific volume, isothermal compressibility, and excess volume supports the ability of the GMA EoS in predicting and reproducing the experimental thermodynamic properties of liquid mixtures.

In summary, the GMA EoS contains some important features:

Table 8
Results of excess volume and isothermal compressibility correlation with the GMA EoS for polymer solution and blends

Mixture (1)+(2)	κ_{T} $\mathrm{AAD}^{\mathrm{a}}$	V^{E} $\mathrm{AAD}^{\mathrm{b}} \times 10^{2}$ $\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$
PEG-200+1-octanol	3.15	3.01
PEG-200+anisole	4.36	6.56
PPG-425+PEGME-350	2.23	2.86
PEGME-350+PEG-200	2.21	3.26
PEG-200+PPG-400	1.29	2.66
Water+PPG-400	1.36^{c}	3.62

[^2]

Fig. 2. The variation of excess molar volume with composition for PPG-425 (1) + PEGME-350(2) at 0.1 MPa at different temperatures. The solid lines show our calculated values and the symbols stand for experimental ones.

1. The form of the GMA EoS is very simple. Evaluation of its coefficients is very easy.
2. The GMA EoS can predict the thermodynamic properties of polymeric liquids of studied in any temperature, pressure, and composition.

References

[1] Albertsson PA. Partition of cell particles and macromolecules. 3rd ed. New York: John Wiley and Sons; 1986.
[2] Jannelli MP, Magazu S, Maisano G, Majolino D, Migliardo P. Nonideal compressibility in poly(ethylene oxide) water solutions induced by H-bond interactions. J Mol Struct 1994;322:337-43.
[3] Tager AA, Safronov AP, Berezyuk EA, Galaev IY. Lower critical solution temperature and hydrophobic hydration in aqueous polymer solutions. Colloid Polym Sci; 1994;272(10):1234-9.
[4] Kawaguchi S, Imai G, Suzuki J, Miyahara A, Kitano T, Ito K. Aqueous solution properties of oligo- and poly(ethylene oxide) by static light scattering and intrinsic viscosity. Polymer 1997;38(12):2885-91.
[5] Gourgouillon D, da Ponte MN. High pressure phase equilibria for poly(ethylene glycol)s $+\mathrm{CO}_{2}$: experimental results and modelling. Phys Chem Chem Phys 1999;1(23):5369-75.
[6] Compostizo A, Cancho SM, Rubio RG, Crespo Colin A. Experimental study of the equation of state and the surface tension of water-soluble polymers: poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)+ water at 298.15 K. Phys Chem Chem Phys 2001;3(10): 1861-6.
[7] Kenkare PU, Hall CK. Modeling of phase separation in PEG-salt aqueous two-phase systems. AIChE J 1996;42(12):3508-22.
[8] Bekiranov S, Bruinsma R, Pincus P. Solution behavior of polyethylene oxide in water as a function of temperature and pressure. Phys Rev E 1997;55(1):577-85.
[9] Otsuka T, Endo K, Suhara M, Chong DP. Theoretical X-ray photoelectron spectra of polymers by deMon DFT calculations using the model dimers. J Mol Struct 2000;522(1-3):47-60.
[10] Kiyosawa K. Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions. Biophys Chem 2003;104(1):171-88.
[11] Firman P, Kahlweit M. Phase behavior of the ternary system $\mathrm{H}_{2} \mathrm{O}$ -oil-polypropyleneglycol (PPG). Colloid Polym Sci 1986;264(11): 936-42.
[12] Compostizo A, Cancho SM, Rubio RG, Colin AC. Experimental study of the equation of state and the surface tension of water-soluble polymers: poly(ethylene glycol)- b-poly(propylene glycol)-b-poly(ethylene glycol)+ water at 298.15 K. Phys Chem Chem Phys 2001;3(10):1861-6.
[13] Rodgers PA. Pressure-volume-temperature relation for polymeric liquids: a review of equation of state and their characteristic parameters for 56 polymers. J Appl Polym Sci 1993;48(6):1061-80.
[14] Brannock GR, Sanchez IC. Off-lattice van der Waals equations of state for polymer liquids. Macromolecules 1993;26(18):4970-2.
[15] Bogdanic G, Fredenslund A. Revision of the group-contribution Flory equation of state for phase equilibria calculations in mixtures with polymers. 1. Prediction of vapor-liquid equilibria for polymer solutions. Ind Eng Chem Res 1994;33(5):1331-40.
[16] Bokis CP, Donohue MD, Hall CK. Application of a modified generalized Flory dimer theory to normal alkanes. Ind Eng Chem Res 1994;33(5): 1290-8.
[17] Gupta RB, Prausnitz JM. Vapor-liquid equilibria for copolymer/solvent systems: effect of 'intramolecular repulsion'. Fluid Phase Equilib 1996; 117(1-2):77-83.
[18] Goharshadi EK, Morsali A, Abbaspour M. New regularities and an equation of state. Fluid Phase Equilib 2005;230(1-2):170-5.
[19] Goharshadi EK, Moosavi F. Prediction of thermodynamic properties of some hydrofluoroether refrigerants using a new equation of state. Fluid Phase Equilib 2005;238(1):112-9.
[20] Goharshadi EK, Moosavi M. Extension of a new equation of state to the liquid mixtures. Ind Eng Chem Res 2005;44(17):6973-80.
[21] Goharshadi EK, Berenji AR. A new equation of state for predicting the thermodynamic properties of liquid alkali metals. J Nucl Mater 2006; 348(1-2):40-4.
[22] Lee MJ, Lo CK, Lin HM. PVT measurements for mixtures of poly(ethylene glycol methyl ether) with poly(ethylene glycol) from 298 to 338 K and pressures up to 30 MPa . J Chem Eng Data 1998;43(6): 1076-81.
[23] Lee MJ, Lo CK, Lin HM. PVT measurement for mixtures of 1-octanol with oligomeric poly(ethylene glycol) from 298 to 338 K and pressures up to 30 MPa. J Chem Eng Data 1999;44(6):1379-85.
[24] Colin AC, Cancho SM, Rubio RG, Compostizo A. Equation of state of aqueous polymer systems: poly(propylene glycol)+water. Phys Chem Chem Phys 1999;1(2):319-22.
[25] Colin AC, Rubio RG, Compostizo A. Equation of state of a blend of water-soluble polymers: poly(propylene glycol) + poly(ethylene glycol). Polymer 2000;41(20):7407-14.
[26] Lee MJ, Tuan YC, Lin HM. Pressure, volume, and temperature for mixtures of poly(ethylene glycol methyl ether) $-350+$ anisole and poly(ethylene glycol)-200+anisole from 298 to 338 K and pressures up to 50 MPa . J Chem Eng Data 2000;45(6):1100-4.
[27] Lee MJ, Tuan YC, Lin HM. Pressure-volume-temperature properties for binary and ternary polymer solutions of poly(ethylene glycol), poly(propylene glycol), and poly(ethylene glycol methyl ether) with anisole. Polymer 2003;44(14):3891-900.
[28] Lee MJ, Hsu TS, Tuan YC, Lin HM. Pressure-volume-temperature properties for 1 -octanol+acetophenone, poly(propylene glycol) +1 octanol + acetophenone, and poly(ethylene glycol) + poly(ethylene glycol methyl ether) + anisole. J Chem Eng Data 2004;49(4):1052-8.
[29] Flory PJ, Orwoll RA, Vrij A. Statistical thermodynamics of chain molecule liquids. I. An equation of state for normal paraffin hydrocarbons. J Am Chem Soc 1964;86(17):3507-14.
[30] Schotte W. Vapor-liquid equilibrium calculations for polymer solutions. Ind Eng Chem Proc Des Dev 1982;21(2):289-96.
[31] Ihm G, Song Y, Mason EA. A new strong principle of corresponding states for nonpolar fluids. J Chem Phys 1991;94(5):3839-48.
[32] Ihm G, Song Y, Mason EA. Equation of state for mixtures of nonpolar molecular fluids. Mol Phys 1992;75(4):897-915.
[33] Sabzi F, Boushehri A. Application of the ISM EoS for polymer melts. Eur Polym J 2004;40(6):1105-10.
[34] Sabzi F, Boushehri A. Application of the ISM EoS for polymer solutions and blends. Eur Polym J 2004;40(12):2689-98.

[^0]: * Corresponding author. Tel.: +98 511 8797660x308; fax: +98 511 8795560.

 E-mail addresses: aberenji@science1.um.ac.ir (A.R. Berenji), gohari@ ferdowsi.um.ac.ir (E.K. Goharshadi).

[^1]: ${ }^{\mathrm{a}} \mathrm{AAD}=(1 / n) \sum_{i=1}^{n}\left|V_{i, \text { calc }}-V_{i, \exp }\right|$.
 ${ }^{\mathrm{b}}$ Data source: Lee et al. [22].
 ${ }^{\text {c }}$ Data source: Lee et al. [26].
 ${ }^{\mathrm{d}}$ Data source: Sabzi and Boushehri [33].
 ${ }^{\mathrm{e}}$ Data source: Lee et al. [27].

[^2]: ${ }^{\text {a }} \mathrm{AAD}=(100 / n) \sum_{i=1}^{n}\left|\kappa_{i, \text { calc }}-\kappa_{i, \exp }\right| / \kappa_{i, \text { exp }}$.
 ${ }^{\mathrm{b}} \mathrm{AAD}\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)=(1 / n) \sum_{i=1}^{n}\left|V_{i, \text { calc }}^{\mathrm{E}}-V_{i, \text { exp }}^{\mathrm{E}}\right|$.
 ${ }^{\text {c }}$ This value has been calculated for these compositions: $x_{1}=0.37701$, 0.61406 , and 0.85537 .

